
Experiences with Model Inference Assisted Fuzzing

Joachim Viide, Aki Helin, Marko Laakso, Pekka Pietikäinen
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Abstract

In this paper we introduce the idea of model inference as-
sisted fuzzing aimed to cost effectively improve software
security. We experimented with several model inference
techniques and applied fuzzing to the inferred models in
order to generate robustness attacks. We proved our pro-
totypes against real life software, namely anti-virus and
archival software solutions. Several critical vulnerabili-
ties were found in multiple file formats in multiple prod-
ucts. Based on the discovered vulnerabilities and the pos-
itive impact on the security we argue that our approach
strikes a practical balance between completely random
and manually designed model-based test case generation
techniques.

1 Introduction

Software has bugs, and the bugs often have security im-
plications. The programs we use process information
from various sources and use a plethora of encodings and
protocols. Input processing routines are among the most
exposed areas of a program, which is why they should be
especially reliable. This is rarely the case. The obvious
need to survive malicious input has drawn attention to
robustness testing, where anomalous input is constructed
either manually or randomly with the hope of catching
the vulnerabilities prior to wide exploitation.

The classic work by Miller et al. demonstrated the
suitability of random testing for disclosing security crit-
ical input parsing errors [15, 16]. In 1999 the PRO-
TOS project 1 developed an approach to systematically
test implementations of protocols in a black-box fashion.
”PROTOS Classic” approach produced several highly
successful test suites. [10,18–20]. Lately fuzzing has be-
come a buzzword in information security. Many recent
public disclosures of vulnerabilities have been based on

1http://www.ee.oulu.fi/research/ouspg/protos/

various degrees of fuzzing 2 3 4 5.
Our previous work in robustness testing of proto-

col implementations has shown that manually designed
structural mutations and exceptional element values are
an efficient way to expose errors in software. Unfortu-
nately while powerful, manual test design has some bot-
tlenecks. It requires some kind of format specification
as a basis, and e.g. poorly documented formats must
be reverse-engineered before test designers can write a
model-based test suite for the format. The human factor
also brings in the danger of tunnel vision, as the power
of manually designed cases is largely dependent on the
expertise and imagination of the designer. On the other
hand, blind random fuzzing has a considerably lower en-
try barrier, but is hindered by the impossibility of effi-
ciently addressing a virtually infinite input space in finite
time.

Our hypothesis is that to be able to effectively test
various areas of a program, the testing input data must
have a fairly correct structure. One way of generating
this kind of data is to use known valid input as basis and
change random parts of it to random values. However,
this approach has the major drawback of not being able
to make wholesome structural changes to the data with-
out knowing how or what it represents. Assuming that
some knowledge about the structure of the data is avail-
able, it is possible to make mutations also in the struc-
tural level. These mutations often have complex con-
sequences in the resulting data, making them extremely
improbable to emerge from a random fuzzer.

The PROTOS Protocol Genome Project was initiated
in 2003 to be a continuation of PROTOS Classic. One

2http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2007-3741

3http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2007-2754

4http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2006-6353

5http://nvd.nist.gov/nvd.cfm?cvename=
CVE-2006-3493



of the goals was to essentially produce a technique and a
general tool that automatically creates effective test cases
from arbitrary valid data examples. The tools could then
be used to complement manual model-based test case de-
signs. We call the resulting approach ”model inference
assisted fuzzing”. The idea is to automatically build a
model describing the structure of some given training
material, and use the model as to generate similar data
for robustness testing.

Model inference for network protocols has previously
been studied in the reverse engineering context [5, 7].
The Discoverer tool by Microsoft Research demon-
strated the feasibility of model inference for some proto-
cols. Inferring grammars, specifically context free gram-
mars, from arbitrary input data has been extensively stud-
ied in data compression research [12, 13].

Purely random testing was deemed ineffective based
on previous experiences, and precise testing based on a
manually designed model is known to work well. What
kind of curve lies between the ends? Our prototype tools
have tested several points in between, and the results
have been surprising.

Our approach can be split into four main phases. In the
first phase samples of data that represent the tested for-
mat are collected for training. The second phase is model
inference, where a description of the training material is
formed. The third phase is using the model, or possibly
a mutated version of it, to produce data that resembles
the training material. In the last step the produced data is
used as input for the test subjects, which are monitored
for anomalous behavior. In the beginning of this paper
we concentrate on the second and third phases, model in-
ference and fuzzing, and describe how these phases are
implemented in some of our prototype tools. Then in
the following sections, we discuss experiences on the ef-
fectiveness of the produced test cases when pitted against
real life software, namely anti-virus and archival tools, in
the format distributed to relevant vendors. Multiple crit-
ical vulnerabilities were found in several products. Fi-
nally, we argue that our approach strikes a practical bal-
ance between completely random and manually designed
model-based test case generation techniques.

2 Model Inference

The first task is to choose a formal system for the model.
You could easy roll your own domain specific language,
data types and operations or objects, but one should also
remember that mathematics provides several well under-
stood systems. The important thing is that the system
is expressive enough to represent the kind of informa-
tion that will be inferred. The next step is implementing
structure inference. This can be anything from a sim-
ple pass computing probabilities to an unsolvable prob-

lem, solution to which is only approximated. For many
systems, like Markov Models, there are many existing
libraries and tools [1–3].

When choosing the formal system, the most important
point to keep in mind is the balance between the sys-
tem’s expressiveness and the ability to infer models that
take advantage of the system’s full power. Generally it
might be said that the more expressive a formal system,
the harder such inference becomes. Dealing with simpler
systems tends to be easier and therefore has less overhead
for experimenting with.

It is useful to view the structure inference as an opti-
mization problem. A trivial model based on training data
simply lists each case of the training data. This gives
no additional insight to the structure or semantics of the
data. Fuzzing based on an empty or trivial model cor-
responds to naive random testing. At the other end of
the spectrum lies the hypothetical perfect model for the
format that the training samples represent. The problem
is to advance from the initial trivial model to better ones
based on some evaluation metric. We often use the “Min-
imum Description Length” [22] principle to evaluate the
models. This in essence means that we consider the best
model to be the one that represents the input data in the
most compact form, as such a model expresses the most
regularity in the input. Should this be a good metric, a
consequence is that compression algorithms can be use-
ful in robustness testing, as the data structures they infer
can be used as models.

2.1 Experiences

In our first prototype tools we assumed that the inferred
model should closely follow the human written specifi-
cations of the valid data. To this end we built an embed-
ded domain specific language called “functional genes”
to house the information. It was easy to define common
structures of communication protocols by writing the de-
scriptions manually, but the power came with a price.
The language was Turing complete, which made good
and lightweight inference hard.

Some of our early structure inference tools used only a
subset of their expressive power, namely that of Context
Free Grammars (CFGs) [9]. We have since then started
to use CFGs as models in most of our tools. CFGs excel
at describing syntactic structure, which subsumes lexical
structure, but they cannot be used to define everything.
Although not universal, they are pleasant to work with.
It turns out that for our purposes CFGs strike a good bal-
ance between simplicity and power.

Although there are good pre-existing algorithms such
as SEQUITUR [17] for building context free grammars
from tagged training data, we decided to roll our own
algorithms for the inference step. Early on we used suf-
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Figure 1: Context Free Grammar (CFG) inference illustrated

fix trees [23] and suffix arrays [14] for identifying most
common shared substring of data elements (e.g. bytes)
between different training data specimens. Each appear-
ance of the selected substring was then replaced in the
source data with one placeholder tag (called a “non-
terminal”) that could be later expanded back. The pro-
cess was repeated until the data could not be further
compacted. Later, we have started favoring a simpler
method whose variations we collectively call MADAM
that does the same thing but just for digrams found from
the training material. Later in our research we found
out that a very similar linear time inference algorithm
called RE-PAIR has been described earlier in data com-
pression context [12]. While its implementation is fairly
simple compared to e.g. SEQUITUR, turns out it pro-
duces grammars with comparable quality in terms of the
Minimum Description Length principle.

Figure 1 illustrates the CFG inference process. In this
case three natural language samples are fed into the in-
ference algorithm, and in the end a context free gram-
mar is produced. The original samples are represented
by non-terminals 0, 1 and 2. Non-terminals 3-5 repre-
sent reoccurring substrings, for example non-terminal 4
expands to the substring “HEY”. When using natural lan-
guage as samples general rules, such as periods being
followed by whitespace and certain digrams being very
common, tend to be found. Our hypothesis is that the
same applies to file formats - the inferred CFGs model
actual data structures.

We have also experimented with finite state machines,
n-gram probabilities, and other model based systems, as
well as traditional random testing. An interesting and
currently open question is how much better, if at all, the
more computationally expensive models are at providing
good input coverage.

3 Fuzzing

Once a model has been inferred, the generation of ran-
domized test cases, i.e. fuzzing, may finally commence.
This is usually a simple procedure compared to the pre-

vious steps. The model inference step often builds gen-
eralizations, which may allow generating more than the
training material. This is already one source of fuzzed
data. In addition to this we have introduced two kinds
of structural mutations; global mutations arise when mu-
tating the model prior to the data generation phase, and
point mutations are inserted during the generation pro-
cess.

Figure 2 illustrates two data generation runs using the
grammar inferred in Figure 1: a regular one without
any mutations and a mutated one with a point mutation.
The regular run produces one of the original input sam-
ples. In the mutated version one expansion of rule 3
is skipped, and the fuzzed output GABBA_HEY is pro-
duced. Other possible mutations would be e.g. replacing
rule 3 with rule 4 (GABBA_HEYHEY) or duplicating it
(GABBA_GABBA_GABBA_HEY).

In case of our functional genes, the fuzzing part con-
sisted of compiling the model into a reverse parser, which
when called, generated the data conforming to the model
instead of parsing it. With CFGs the generation step is
the regular derivation process of formal grammars. Both
mutation types described above were easy to implement,
but we ended up not using global mutations. Point mu-
tations were done by picking a probability, a fuzz factor,
and with that probability altering each step of the gener-
ation process, e.g. by skipping the step or doing it twice.
The higher the fuzz factor, the higher the rate of muta-
tion.

Different strategies for choosing the fuzz factor can be
applied depending on the desired goal. Using a large fuzz
factor yields something we refer to as shotgun testing, i.e.
heavily mutated test cases with point mutations applied
liberally. On the other hand, narrowing down the num-
ber of mutations can be used to pinpoint an uncovered
error, and tested programs may start outright rejecting
too heavily fuzzed data. According to our experiences,
varying the fuzz factor between test cases seems to give
better results than keeping the factor constant.

Random testing cannot be effective when programs re-
ject just about any change to data before processing it.
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Figure 2: Regular and mutated data generation runs using the CFG inferred in Figure 1

Programs can use for example a checksum over a certain
part of the data to decide the validity of input. However,
these kinds of features can be added to the injection or
as special cases to the structure. This approach could be
continued to make fuzzing, and also structure inference,
a human-assisted process. This kind of hybrid testing
may well become the sweet spot of robustness testing.

4 Results

We have implemented and enhanced the described tech-
niques in a series of prototypes and have used them to
generate fuzzed test cases for several file formats and net-
work protocols. When seeking a topic for a large scale
test of the effectiveness of our approach, anti-virus soft-
ware solutions presented themselves as a tempting target.
This was because anti-virus tools by definition process
input from potentially malicious sources, and usually run
at high privileges, increasing the impact of a potential
compromise. Anti-virus tools are commonly installed
organisation-wide on all able computers, even critical
and high-profile ones. Indeed, usage of anti-virus tools
is commonly mandated by organisational policy, contract
and other administrative and/or legal requirements. For
example the US ”Health Insurance Portability and Ac-
countability Act” (HIPAA) [4] legislation is commonly
interpreted to mandate use of anti-virus software.

However, as our approach is especially suited for rapid
testing of several different formats, the most relevant mo-
tivation for choosing anti-virus tools is that they parse a
wide variety of different data formats. They even tend
to process files inside archived content. Therefore, we
decided to create a test suite for several archive formats,
namely ACE, ARJ, BZ2, CAB, GZ, LHA, RAR, TAR,
ZIP and ZOO. Many archive formats have a long history,
which has given their implementations plenty of time to
mature and harden with respect to implementation level
errors. Evaluating such mature products should provide

us useful feedback on the current state of implementation
level robustness in general as well as the effectiveness
of our approach. Moreover, while the specifications for
the archive file formats are in some cases available, there
are many versions and variants of many of the formats,
and there are in many cases no formal easily process-
able specifications of the contents. Covering such file
formats with testing approaches requiring manual mod-
eling of the tested protocol/file format, such as PROTOS
Classic [10], would be cumbersome.

For the training material, we gathered samples of files
compressed in various archive formats, with some at-
tempt of representativity of features (different versions,
password-protected files etc.), resulting in 10-100 train-
ing files per format. A model for each of the formats was
built using our prototype. At most 320 000 fuzzed files
were then generated from each model and tested against
a variety of anti-virus products. Getting the tests running
took approximately an hour per archive format, with the
majority of the time spent on gathering the training ma-
terial, not counting the initial software installation and
setting up a general rudimentary environment for feeding
the test cases and collecting the most spectacular crashes.

During the preliminary tests our approach proved to
be, to our horror and surprise, quite effective. The
findings are summarized in Table 1. Five anti-virus
tools were instrumented only by capturing the exceptions
raised by them and counting their crashes. Two crashes
where the instruction pointer was identical were consid-
ered to be the same bug. This is a very rough metric and
may underestimate the real number of bugs (a program
does not have to crash to have a bug), but provides a rea-
sonable estimate for software where the source code is
not available.

All in all, four test subjects were found to be vulner-
able to some of the test cases 6, each failing to survive

6The fifth product only implemented a small handful of archive for-
mats.



Subject ace arj bz2 cab gz lha rar tar zip zoo
1 3 2 1 1 - 3 - - 3 1
2 - 5 - 12 - 2 1 - - -
3 - 5 2 1 - 3 2 - - -
4 - 1 - - - 1 1 - 1 -
5 n/a n/a n/a - - n/a n/a - - n/a

Table 1: Unique bugs per file format.

test cases from at least four archive formats. The be-
haviour of the tested anti-virus programs after receiving
input from the test cases was extremely interesting and
wildly imaginative. For instance, in one case feeding a
fuzzed RAR data caused an anti-virus tool to start ignor-
ing all malware it usually catches. Meanwhile, the pro-
gram continued to present the impression that there was
nothing wrong with it. Also several other software tools
that process archived files were found to be vulnerable,
such as the now-patched bzip2 archiver 7.

As a result of our tests, we concocted a CD with 1 632
691 different fuzzed archive files, during the latter half
of the year 2006. The vulnerability coordination task
was taken on by the Finnish national Computer Emer-
gency Response Team 8 (CERT-FI) and the Centre for the
Protection of National Infrastructure 9 (CPNI, formerly
known as NISCC), who identified more than 150 ven-
dors whose products has prior been vulnerable to similar
issues. The vulnerability coordination process was done
according to the constructive disclosure [11] guidelines,
and as such took a considerable amount of time. The test
suite [21] and a related CERT-FI and CPNI joint vulner-
ability advisory [8] were finally released to the public 17
March 2008. Due to the long time period during which
the test set was only available to vendors, a number of
potential security holes in the software packages we had
found vulnerable were independently found and fixed by
other parties.

5 Discussion

The presented technique has proven to be a surprisingly
effective way of creating test cases causing repeatable
visible software failures, considering the fact that it lacks
any domain specific knowledge. Thus, we argue that in-
corporating model inference with random test generation
has the potential to overcome the inefficiencies of both
random testing and hand-made test suites, such as those
of PROTOS Classic.

Furthermore, we postulate that the combination of
manual test design and model inference guided random

7http://bzip.org/
8http://www.cert.fi/en/
9http://www.cpni.gov.uk/

testing should be explored. The quality of the inferred
model obviously depends on the available data samples;
if samples lack in depth and diversity, then much of the
dormant parsing functionality in software will be missed
by the generated test cases. Manual test design would
result in coarse partitioning of the input space and after
that, the machine may take over in order to systemati-
cally crunch the fine-grained details. This way the ill
effects of tunnel vision and omissions as well human er-
rors may be alleviated in test design. Perhaps this will be
a way to leap beyond the pesticide paradox as stated by
Boris Beizer:

Every method you use to prevent or find bugs
leaves a residue of subtler bugs against which
those methods are ineffectual. [6]

The most significant limitation of the described ap-
proach is its lack of domain specific knowledge, i.e. the
semantic meaning of pieces of data. The means of ex-
pressing, inferring and incorporating external reasoning
should be developed further. A realistic tool would prob-
ably combine several independent model inference tech-
niques in a unified framework. A sufficiently powerful
structure description language could be used as the com-
mon denominator to glue the approaches together, while
still keeping things simple. For example, we have imple-
mented simple tools for identifying potential checksum
fields and length-payload pairs from given data samples.

We have not yet extensively studied how the collec-
tion phase of the original training data should be done to
maximize the coverage of produced test cases. More-
over, our monitoring of test subjects is still rudimen-
tary and warrants further exploration. For example,
the data collected from properly monitored test subjects
could be used as feedback for the model generation,
although this might mean stepping outside the strictly
black box testing mindset. Ultimately, we aim to mature
our techniques into a test case generation methodology
and framework, which would be similar to the one pro-
duced in the earlier PROTOS Classic project, but easier
and faster to use. We are also planning on releasing more
full fledged test sets of fuzzed data in the manner estab-
lished in the PROTOS Classic project and refining the
vulnerability disclosure process.



6 Conclusions

An automatically inferred model can be used as a ba-
sis to generate seemingly valid, but still anomalous data
for robustness testing. The technique can be applied to
any sample input to automatically produce test cases in
a black box manner, and seems to be effective in reveal-
ing implementation faults in software. However, the ap-
proach in its current form should not be expected to give
a good coverage of the test space. The fuzzing method
is extremely rudimentary, and the context free grammars
representation used does not really contain information
about the actual semantics of the data.

In spite of this, we believe that automatic structure
analysis can make random testing a viable option, be-
cause a structural model allows a randomized fuzzer to
generate more meaningful changes in robustness testing
material. We argue that our approach strikes a practi-
cal balance between completely random and manual test
design. It can therefore complement both of these tech-
niques. Our experiences with simple prototypes sug-
gest that model inference assisted fuzzing is effective and
should be explored and developed further. Being able to
finding critical vulnerabilities in mature, security-related
software is proof of this.
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